164

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Occhipinti, A., De Santis, A., & Maffei, M. E., (2014). Magnetoreception: An unavoidable

step for plant evolution? Trends Plant Sci., 19(1), 1–4.

Paul, A. L., Ferl, R. J., & Meisel, M. W., (2006). High magnetic field induced changes of gene

expression in Arabidopsis. Biomagn. Res. Technol., 4(1), 1–10.

Payez, A., Ghanati, F., Behmanesh, M., Abdolmaleki, P., Hajnorouzi, A., & Rajabbeigi, E.,

(2013). Increase of seed germination, growth and membrane integrity of wheat seedlings

by exposure to static and a 10 Khz electromagnetic field. Electromagn. Biol. Med., 32(4),

417–429.

Pazur, A., & Rassadina, V., (2009). Transient effect of weak electromagnetic fields on calcium

ion concentration in Arabidopsis thaliana. BMC Plant Biol., 9(1), 1–9.

Pittman, U., (1962). Growth reaction and magnetotropism in roots of winter wheat (Kharkov

22 MC). Can. J. Plant Sci., 42(3), 430–436.

Poinapen, D., Brown, D. C., & Beeharry, G. K., (2013). Seed orientation and magnetic field

strength have more influence on tomato seed performance than relative humidity and

duration of exposure to non-uniform static magnetic fields. J. Plant Physiol., 170(14),

1251–1258.

Pooam, M., Arthaut, L. D., Burdick, D., Link, J., Martino, C. F., & Ahmad, M., (2019).

Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs

during flavin reoxidation in the dark. Planta, 249(2), 319–332.

Portaccio, M., De Luca, P., Durante, D., Grano, V., Rossi, S., Bencivenga, U., Lepore, M., &

Mita, D., (2005). Modulation of the catalytic activity of free and immobilized peroxidase

by extremely low frequency electromagnetic fields: Dependence on frequency. Bio

ELectromagn., 26(2), 145–152.

Prajapati, R., Kataria, S., & Jain, M., (2020). Seed priming for alleviation of heavy metal

toxicity in plants: An overview. Plant Sci. Today, 7(3), 308–313.

Qamili, E., De Santis, A., Isac, A., Mandea, M., Duka, B., & Simonyan, A., (2013).

Geomagnetic jerks as chaotic fluctuations of the earth’s magnetic field. Geochem. Geophys.

Geosyst., 14(4), 839–850.

Radhakrishnan, R., & Kumari, B. D. R., (2012). Pulsed magnetic field: A contemporary

approach offers to enhance plant growth and yield of soybean. Plant Physiol. Biochem.,

51, 139–144.

Radhakrishnan, R., & Kumari, B. D. R., (2013). Influence of pulsed magnetic field on soybean

(Glycine max L.) seed germination, seedling growth and soil microbial population. Indian

J. Biochem. Biophys., 50(4), 312–317.

Radhakrishnan, R., & Kumari, B. R., (2013). Protective role of pulsed magnetic field against

salt stress effects in soybean organ culture. Plant Biosystems-An International Journal

Dealing with All Aspects of Plant Biology, 147(1), 135–140.

Radhakrishnan, R., (2019). Magnetic field regulates plant functions, growth and enhances

tolerance against environmental stresses. Physiol. Mol. Biol. Plants, 25(5), 1107–1119.

Radhakrishnan, R., Leelapriya, T., & Kumari, B. D. R., (2012). Effects of pulsed magnetic

field treatment of soybean seeds on Calli growth, cell damage, and biochemical changes

under salt stress. Bio ELectromagn., 33(8), 670–681.

Rajendra, P., Sujatha, N. H., Sashidhar, R., Subramanyam, C., Devendranath, D., Gunasekaran,

B., Aradhya, R., & Bhaskaran, A., (2005). Effects of power frequency electromagnetic

fields on growth of germinating Vicia faba L. the broad bean. Electromagn. Biol. Med.,

24(1), 39–54.